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Summary. A linear algebraic characterization for sets of independent reactions, independent 
reaction numbers, conservation laws and resistant groups for both equilibrium and kinetic 
systems is suggested. Basing on the ranks of two stochiometric matrices N and M, these concepts 
are discussed and formulas given for setting up of independent sets of equilibrium and kinetic 
equations. The difference in the definition of independent reaction numbers for these two types 
of systems is pointed out. A brief consideration is devoted to the transformations of equilibrium 
and kinetic equations induced by transformation from one set of linearly independent reactions 
to  another. Finally the conservation laws are forniulatcd as chemical invariants within the N, M 
framework. 

1.  Introduction. - In this note we wish to give an algebraic definition of concepts 
which play an important role in the stochiometry of thermodynamics and kinetics 
of complex systems of chemical reactions. The concept of independent reactions and 
resistant groups (components) is used as a standard procedure to formulate chemical 
equilibrium [l]. Algebraic formulations of these have been suggested by several 
authors, cf. Lielmezs [a ] ,  Gavalas [3] and by Aris [4]. 

Nevertheless, both are treated in an intuitive way, though they play a fundamental 
role in many fields of physical chemistry and therefore more concise definitions might 
be of practical value. 

Since some time a linear algebraic technique for formulation of the stochiometry 
of complex chemical reaction systems for both equilibrium and kinetic systems has 
been used at our laboratory, which is based on the concept of reaction numbers in- 
troduced by Schottky et al. [5] [6], De Donder [7] and used by many authors in the field 
of chemical thermodynamics [8] [9]. Since this approach appears to offer a particularly 
systematic way for the formulation of the concepts mentioned above, we intend with 
this note to publish a set of formulae relating stochiometry, independent reactions, 
independent particle numbers and conservation laws for arbitrarily complicated 
chemical reaction systems. For both the case of equilibrium and kinetic systems a 
systematic way for deriving a sufficient set of equations of equilibrium state or 
motion will be given. Finally some remarks concerning symmetry groups of such 
systems are made, The following notations and assumptions will be used. For sim- 
plicity it is assumed that only one phase is considered in the system. However, ex- 
tension to any number ,5’ of phases is straightforward and needs barely explicit 
formulation besides those given in the text. Similarly the presence of charged par- 
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ticles may be considered. Kelevant particles present in the system will be denoted 
by Ai, i = 1, 2, .  . ., A and any reaction Rj between these bv 

In multiphase systems one and the same particle present in p different phases may 
by considered a s  /3 distinguishable different species. Then the processes transfering 
the particle from one phase t o  another have to be included in the set of reactions 
occuring in the system. 

A reaction number (j to any reaction Rj is assigned, whicli relates mole numbers 
initially and actually present in thc system bl' 

Under appropriate conditions, analogs of Eq. (2) may be written for niolalities mi 
and molarities ci [lo], i.e. - 

R 

mi = mi0 4.- zfj(Yji/ 1 1 1 ~ ) ~  i = 1, 2,. . ., A 

ci = ci, + Z(j(vj i /V),  i = 1, 2,. . ., ,4 

(2') 

V'') 

j = 1  

K 

1 - 1  

- 

where 

m, = 10--3n,RIo, Mo is the molar mass of the solvent in g mol -1. 

Eq. (2') is exact if the solvent A, is inert under all reactions occuring in the system 
and applies in ,general approximately i f  mi < ni, for all i == 1, 2, ..., A. Eq. (2") 
applies for phases with constant volume V and is approximately applicable for 
condensed phases even a t  moderate concentrations. 

The symbol [At] will be used to denote the concentration of particle Ai, expressed 
either as molar fractions, molality or molarity. It is always understood that con- 
centration measures are consistent with the standard states chosen for any phase 
(system) considered. 

Every relevant particle Ai is stochiometrically defined by a formula unit 

Ai = ELi, E:L,z ... E& ( 3 )  

where El E2.. . E E  denotes the nuclides building up the set of particles A,, A,, . . ., An 
and the coefficients pi are the usual stochiometric coefficients. Depending on the 
situation, the different nuclides of an element may or may not be relevant and often 
only the elemental composition of each particle has to be taken into account. 

The formalism will be restricted to  ideal systems but is applicable to all real 
systems for which there exists a unique relation between activities and concentrations 
of all relevant particles. 

2.1. Stochiometric matrix, reaction numbers, independent reactions and 
independent particle concentrations. - If an A dimensional particle space R* is 
introduced, whose base vectors are assigned to the relevant particles Ai, i = 1, 2,. . ,A, 
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then any one of the reactions (1) may be considered as a vector of this space and the 
set of all reactions Rl , .  . ., RE may be written a5 

N ( A )  = (0). (4) 

The jth row of the stochiometric matrix N is given by the stochiometric coeffi- 
cients vji, i = 1, 2,.  .., A according to  Eq. (l), therefore N is an R x A  rectangular 
matrix. (A) and (0) denote a symbolic vector whose components are the particles and 
the zero vector, respectively, both of dimension A x 1. 

The form of Eq. (4) is conserved if appropriate definitions of the stochiometric 
matrix N are used for matrix formulation of Eqs. (a),  (2 ' ) ,  (a"), viz. 

{A} = {fio) + {f} N 

{fi} = {Go} + {i} N 

(C} = {G} + {i} N .  

(5) 

(5') 

(5") 

In  Eq. (5) {fi), {I%}, and (z} denote the row matrices {nl, n2,. . ., nA} etc. of the mole 
numbers, molalities and molarities, respectively, with dimension 1 X A. {[} stands for 
the 1 x 

Let R < min (E, A) be the rank R = r(N) of N. For the following we assume N 
ordered in a way such that the first r rows and columns are linearly independent. As 
a consequence N may be divided into sub-matrices according to 

I 

row matrix (t1E2.. . 5 ~ )  of the reaction numbers. 

NR,R  NR,A-R 
NR-R,R  NR-R,A-R N =  ( 

where the upper indices denote row and column numbers of the subblocks and 

jNRiRI # 0. 

Correspondingly the rows of mole numbers (molalities and molarities) and reaction 
numbers may be divided, i.e. 

{fi} = {fiR f iA-R)  

hence 
(7) 

There exist two matrices P(R-R; I<) and Q(R, A-R), such that 

P(NR,R NR,A-R)  = ( ~ N R , R  ~ N R , A - R )  = (NR-R,R NR-R,A-R) (9) 

with 
p ~ ~ i i -  R, R(NR, R)-I (9') 
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The matrices P and Q may be given a simple interpretation. The rows of P give the 
linear combinations of reactions R1, Rz,. . ., RR by which the reactions R R + ~ ,  R h ,  RE 
are represented, viz. 

I< - 
R h  = P h j  Rj, h = Ri-1,. . ., R (1 1) 

(11‘) 

J = 1  
R 

”hi = P h j  Y j i ,  i = 1,2 , .  . ., A. 
1 = 1  

Therefore the reactions R1,. . ., f z ~  may be considered as an independent set, by which 
all other reactions R ~ z R + ~ ,  . . ., RE may be linearly expressed. Correspondingly the mass 
law constants of the latter may be expressed by 

R 

1 = 1 , = 1  1;1 

A - 
= 17 [Ai]”11i, 11 = K+1,.  . ., R. 

1 = 1  

The set of linearly independent reactions is not uniquely determined in general, since 
any subset of R linearly independent rows of N may be chosen as a representative. 
The interrelation among the different choices will be discussed in section 2.2.3. 

2.2. Equilibrium state. - For equilibrium systems any admissible choice of any 
particular set of linearly independent reactions is sufficient for calculation of the 
equilibrium state of the phase (system) under consideration. 

2.2.1. - If chemical potentials are used the equilibrium conditions may be written 
according to  (4) 

This linear homogeneous system has a non-trivial solution if R = r(N) < A [ll]. 

N(pi) = (0). 

Using the ordering of N as assumed above then 

Eq. (13) shows that A-R chemical potentials may be chosen arbitrarily, which then 
determine (pR) uniquely. Therefore A-R further equations have to be provided by 
conservation laws (see 2.2). 

2.2.2. If equilibrium constants are used for determination of the equilibrium state, 
we first express concentrations [Ail, i = 1,2, .  . ., A by the reaction numbers fR of 
a set of linearly independent reactions 

- 

(’nR fiA-R} { f i f  fit-”} + {c} ( N R , R  NR,A-R) (14) 
and insert these into the Eq. 

A 
Kj = 17 [Ail’ji, j = 1, 2,. , ., K 

i = l  
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which provide R equations for determination of the equilibrium reaction number 
vector z:q. No explicit recurrence to  conservation laws has been made, since these 
are implicitely contained in Eq. (14). One therefore may consider the vectors @ and 
fifi as a vector of independent reaction numbers and a vector of independent mole 
numbers (concentrations) of equilibrium systems. 

Comparing the two approaches 2.2.1 and 2.2.2 one may state that they have some 
analogy to nod and mesh analysis in linear network theory. Obviously the number of 
equations to be solved in the two approaches is A-R and R = r (N), respectively. 
Therefore i t  may be advantageous to use 2.2.1 if A-R<R and 2.2.2 if R<A-R. 

2.2.3. Transformattons of the equilibrium equations indclced by dafferent choices 
of sets of independent reactions. - As mentioned in section 2.1 the choice of a set of 
independent reactions is in general not unique. Once such a set R = { Rl,. . ., RR}  has 

been chosen, any other admissible set @ = {gl, g2.. . RE} is expressible as a trans- 
formation induced by a linear operator T, viz. 

I 

- - 

?{ R }  = { R} = T{ R }  (15) 

where T is a nonsingular rational matrix. Written in components 

A 

hence 

- 
(NR,R NR,A-R) = T(NR,R, NR,A-R)  = (TNILR, TNR,A-R) .  (18) 

Furthermore, f? induces a linear transformation of the vector {R of independent 
reaction numbers, since we require that any chemical state of the system must be 
uniquely expressible by any choice of a linearly independent set 

Ey. (15) and (20) show that the vectors of independent reactions and independent 
reaction numbers transform contragrediently, i.e. 

I 

iR = z52 
under the group of rational matrices T of degree R. The equilibrium equations 
K j  = DrAil”11, j = 1, 2,.  . ., R transform uniquely into 



R 
~: K;(t)."jj, 

7 1  

whicli corresponds to Eq. (16) and expresses the fact that  the logarithms of the 
equilibrium constants of sets of independent reactions transform cogrediently to the 
sets o f  independent reactions, i.e. ,. - 

T(1nK) = ( I n K )  := T(lnK). (22) 
In general the (K--K, R) matrix P introduced by Eq. (9) is related to a particular 
matrix T, inore exactly to some rows of it. 

As a symmetry group of an equilibrium system one may define the set of non- 

singular rational linear transformations 6 = ( . T-l, which leave the set of equi- 
librium equations invariant. At the present time very little seems to be known about 
sucli groups, besides the trivial case of permutations and monomial transformations. 

However, it sl~ould be mentioned that transformations of the type N R , R  = 

T N R s R  might bt. usrful to find sets of independent reactions to whicli sets of equations 
for tlie equilibrium vector Eeq of lowest degree belong. According to Eqs. (17), (18) 
and (22) this is cquivalent to find matrices NR.x, N R 9 A - R  with as many coefficients 
of lowest possible modulus (maximally simplified system of equilibrium equations). 
'4s to our knowledge this aspect of complex chemical equilibriurn systems has not yet 
been systematically investigated, tliough it might be of practical iniportance. 

3. Kinetic systems. - 3.1. I%troductory remarks and notation. - -  In contrast to 
cquilibriuni systems there may occur inore than R =L r(N) reactions in kinetic 
systems whicli are kinetically relevant. As a matter of experience, it Iiowever is 
improhable that kinetically relevant reactions have liigher molecularity and order 
than two, i.e. for most of tlie kinetically relevant reactions a t  most four o f  the 
stochionictric coefficients vii are non zero, and their moduli 1 vji 1 -< 2. 

of reactions with 
stocliiometric matrix N comprises all kinetically relevant reactions between the 
kinetically relevant particles A,, A,, . , ., AA of the phase (system). again N is supposed 
to be ordered in a way that tlie first K = r (K)  sG I? rows of N are linearly independent 
(see sect. 2.1). The rate equations are assumed to be given by expressions of tlie type 

- - -  

- 

For the follvwing we shall assume that thc set R,, R,, . . ., 

(23)  

where [AJ denotes the concentration vector and 7c sjmbolizes all relevant physical 
state parameters of the system. Furthermore, it is assumed that linear relations 
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connect concentrations [Ail with reaction numbers either exactly or approximately, 
viz. 

K - A - R  
{ [ a l R C w - " >  = {[a10 CAI0 1 

(24) 

1 N R , R  N R ,  A-R 

+ { i R i ~ - R ]  ( N R - R ,  R NR - R, A-  R) ,  

{[A]} = [N. 

Basing on these assumptions, systems of independent kinetic equations (i.e. equations 
of motion) may be obtained either in terms of concentrations or in terms of in- 
dependent reaction numbers. The latter concept should, however, be modified in the 
case of kinetic systems. This may be elucidated as follows. According to Eqs. (8), (9), 
(1 0) the particle concentration equations may be written as 

[AIR = [A]: + i R N R 9 R  + g E - R P N R , R  = [A]:: + (FR + i E - R P ) N R , R  (25) 
[ i ] A - R  = [A],"-" + ~ R N R , A - R  + g E - R N c - R , A - R  

- - CAI;- K+ ~ R N R , A - R  + ~ E - R P N R , A - R  

-- 
= [A]:-" + (CR + E R - R p )  NR9A-R (26) 

(17) and (18) show that the vector ER + @ - R P  represents the set of independent 
reaction numbers for kinetic systems, in contrast to equilibrium systems, for which 
the vector ,@ plays this role. It therefore seems appropriate to  introduce the notation 

X R  = i R  + & R p  

(@]R - [A],") ( N R * R ) - l =  X R  

(27) 

for the vector of kinetic independent reaction numbers. Therefore 

(257 

(26') [AIA-R - [A]:-" = );;RNR,A-R = ([A]. - [A],") (NR,R).-1NR,A-R. 

According to (25') and (26') one may appropriately denote ([AIR) as vector of in- 
dependent concentrations. Obviously Eq. (25') is the kinetic analog of (14). 

3.2. Systems of independent kinetic equations. - From Eqs. (15), (17) and (18) 
systems of independent kinetic equations either in terms of independent concentra- 
tions or independent reaction numbers may be obtained as follows 

- - - 
X R  = &R + ,$R-Rp = [A]R(NR, R)-1 

= $([AIR, [A]A-R, n) 4- TR-R([A]R, [A]A-R, n) . P 

= TR([A]R, [i];-. + ([AIR - [A],") ( N R $ R ) - l N R > A - R ,  4 
+ fR-R([A]R, 

= @([A]: + k R N R , R ,  [A]:-" + k R N R , A - R ,  n) 

+ ([AIR - [A]:) (NR9R)-lNR,A-R, n)P 

I- -+ fR-R([A]," + k R N R 9  R, [A];-R + k R N R y  A-R, n) P. (28) 
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From this set of equations either a system of equations of motion for the vector (XR) 
of independent reaction numbers or for the vector ( lA]R) of independent particle 
concentrations may be selected (irreducible systems of equations of motion). 

3.2.1. As a special case we consider a kinetic system of R independent reactions 
R,, &.,. . ., 2~ with reaction numbers [R = {(l(z.. . [R] and their back reactions 
- R1, - Rz,. . ., - RR with reaction numbers 8 1  = {[--l(-2.. . E--R} .  As a consequence 
XR = (R -[_R == (Ej - E - j }  = {Xj}, i.e. the components of the independent reaction 
number vectors are the differences of the reaction numbers of each forward-back- 
ward reaction pair. In  this case the equilibrium state is given by 

- 
- - - - - 

- - -  - -  
X R  = 0 = fR(X,",) - fR(X&) 129) 

which determines the equilibrium value A& of the reaction number vector. The 

relation of to $ may be obtained from Eqs. (14) and (25 )  

(30') 
- - 

hence XZ2 = el (30") 

provided the initial conditions are chosen appropriately for both descriptions. 
If not all of the back reactions are kinetically relevant, one obtains for any pair 

forward-backward reaction a component X = ( - [- of the vector X R  of independent 
reaction numbers. 

3.2.2 Kinetic systems with pseudo-equilibrium steps may be treated by including 
a set of independent equilibrium equations Kj = 17(Ai)"~l into the set of equations of 

motion. Since either a reaction is kinetically relevant or a pseudo-equilibrium step, 
the latter play the role of conditions to the set of independent equations of motion 
and should be treated as such. 

3.3. Transformations of kinetic equations induced by transformation in the space 
of linearly independent reactions may be formulated in complete analogy to section 
2.2.3. If T is a linear operator according to  Eqs. (15), then, according t o  (11) and (17) 

- 

1 

with 
R R  \ 

and therefore by (26) and (27) - - 
X R T  = X 

Eq. (32) is the analog of Eq. (19) and may be used to transform the system of kinetic 
equations (28) from one set of independent equations to any other admissible set. 



,. Ihe remarks made in sect. 2.2.4 concerning symmetry groups and maximally 
simplified systems of equations also apply to kinetic systems in strictly the same 
sense. 

4. Conservation laws and resistent groups. - For every chemical system the 
number of nuclei of each nuclide present in the system is a chemical invariant. The 
conservation laws may therefore be expressed conveniently by means of the (A, E) 
matrix M = (pik), which relates the particle vector (A) to the vector (E) of nuclides 
present in the system. As specified in section 1, Eq. ( 3 )  may then be written 

Hence from (4) 
(A) = M(E) 

NM = (0) 

(33) 

(34) 

and the conservation of the vector of numbers of nuclides is directly given from 

Symbolically the conservation laws may be expressed by the linear form 

{iiE) 

in which each term characterized by a nuclide is a chemical invariant. 

and M is a non-negative matrix of rank 
The vector of initial mole numbers is a non-negative, otherwise arbitrary vector 

r(M) =,u <min(A, E) (36‘) 

where the ranks R, p of N and M, respectively, are interrelated [la] by 

R + p  < A .  (36”) 

Therefore the number of independent conservation laws may now be shown to 
equal p. Without reordering the stochiometric matrix N the vector of nuclides 
(elements) may be ordered in a way that the first p columns of M are linearly in- 
dependent, i.e. the (A, E) matrix M is ordered as a divided matrix M = (MP ME-”). 
MP is a (A, p) submatrix of M with rank p = r(M) = r(Mp < min (A, E) and ME-’ is a 
(A, E-p) matrix. Hence there exists a uniquely defined (p, A) matrix 0, such that 

MPO = ME+ , where M = (MP MPO). (37) 

Consequently the conservation law reads 

{a,} = {ii,} (MP M’O) = {ii,M” fii,M”O) 

= {EE” fig01 = {fig, fi;-q 

(381 
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Obviously only the first .p nuclide numbers nEl  , n E 2 , .  . ., nk:, are independent 
invariants, whereas nEp+l, nBp+2,. . ., nBE are linearly dependent on the former ones. 
One therefore rnay introduce symbolic aggregates 

F1, F2, , Ff‘ 

which may be called resistant groups and 

F“ = EiXl Etx, ,  . . EExP, x = 1, 2 , .  . ., ,LL (39) 

may be defined by p linearly independent rows of M P  building up a rational non- 
singular (p, p) submatrix M”7” of MP 

Consequently the linearly independent conservation laws of the number of nuclides 
El, E2,. . ., El” may be written symbolically 

1.e. 

As in the case of linearly independent sets of reactions the choice of the set of resistant 
groups is not unique in general, since every non-singular (,u,p)- submatrix of M leads 
to a set of p resistant groups. Any such choices, however, are interrelated by rational 
non-singular transformations and therefore in a certain sense equivalent. 

Eq. (34) implies that the rank of the product NM is zero. This is obviously the 
case already for the products 

(NR, R NR, -4-8) M (43‘) 

(NR,R ,  N R A - R )  M/i.  (43“) 

From an algebraic point of view any set of independent reactions may be interpreted 
as a complete solution of the equation 

XM = (0). 

However, we shall not discuss this aspect of the stochiometric matrix here further 
WI, 1141. 

We wish to  express our gratitude to Messrs. Sandoz, Basle, for support of this work. 
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Erratum 

Helv. 55, 1532 (1972), Abhandlung Nr. 150 von H. Hauth und D. Stauffacher: In  
der Nomenklatur der Verbindungen 20 bis 32 (p. 1541 bis 1544) muss es anstelle von 
-4cr, 14-didemethyl- korrekterweise -48,144idemethyl- heissen. 
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